Processing math: 100%

SymPy Gamma logo SymPy Gamma

integrate (x**a*exp (-x),(x,0,oo ))
0xaexdx
plot(Piecewise((gamma(a + 1), re(a) > -1), (Integral(x**a*exp(-x), (x, 0, oo)), True)))
solve(Piecewise((gamma(a + 1), re(a) > -1), (Integral(x**a*exp(-x), (x, 0, oo)), True)), x)
x=
diff(Piecewise((gamma(a + 1), re(a) > -1), (Integral(x**a*exp(-x), (x, 0, oo)), True)), x)
ddx{Γ(a+1)forre(a)>10xaexdxotherwise=
series(Piecewise((gamma(a + 1), re(a) > -1), (Integral(x**a*exp(-x), (x, 0, oo)), True)), x, 0, 10)
See what Wolfram|Alpha has to say.

Experiment with SymPy at SymPy Live.